Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy.
نویسندگان
چکیده
The distal tubule of the mammalian kidney, defined as the region between the macula densa and the collecting duct, is morphologically and functionally heterogeneous. This heterogeneity has stymied attempts to define functional properties of individual cell types and has led to controversy concerning mechanisms and regulation of ion transport. Recently, molecular techniques have been used to identify and localize ion transport pathways along the distal tubule and to identify human diseases that result from abnormal distal tubule function. Results of these studies have clarified the roles of individual distal cell types. They suggest that the basic molecular architecture of the distal nephron is surprisingly similar in mammalian species investigated to date. The results have also reemphasized the role played by the distal tubule in regulating urinary potassium excretion. They have clarified how both peptide and steroid hormones, including aldosterone and estrogen, regulate ion transport by distal convoluted tubule cells. Furthermore, they highlight the central role that the distal tubule plays in systemic calcium homeostasis. Disorders of distal nephron function, such as Gitelman's syndrome, nephrolithiasis, and adaptation to diuretic drug administration, emphasize the importance of this relatively short nephron segment to human physiology. This review integrates molecular and functional results to provide a contemporary picture of distal tubule function in mammals.
منابع مشابه
Renal Physiology Distal Convoluted Tubule
The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular l...
متن کاملNa(+)-D-glucose cotransporter in the kidney of Squalus acanthias: molecular identification and intrarenal distribution.
Using primers against conserved regions of mammalian Na(+)-d-glucose cotransporters (SGLT), a cDNA was cloned from the kidney of spiny dogfish shark (Squalus acanthias). On the basis of comparison of amino acid sequence, membrane topology, and putative glycosylation and phosphorylation sites, the cDNA could be shown to belong to the family of sglt genes. Indeed, Na(+)-dependent d-glucose uptake...
متن کاملThe Effect of Nifedipine and Verapamil on Kidney Histology Rat
Purpose: The aim of this study was to evaluate the effect of verapamil and nifidipine on diabetic kidney in rats. Materials and Methods: In this experimental study, 6 groups of rats were studied, group I; intact (sham) group II; diabetic (control), group III and IV; diabetic treated with verapamil or nifedepine group V and VI normal rat which recieved verapamil or nifedipine. Diabetic rats (co...
متن کاملNa+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution.
Studies on membrane vesicles from the kidney of Leucoraja erinacea suggested the sole presence of a sodium-D-glucose cotransporter type 1 involved in renal D-glucose reabsorption. For molecular characterization of this transport system, an mRNA library was screened with primers directed against conserved regions of human sglt1. A cDNA was cloned whose nucleotide and derived amino acid sequence ...
متن کاملA molecular update on pseudohypoaldosteronism type II.
The DCT (distal convoluted tubule) is the site of microregulation of water reabsorption and ion handling in the kidneys, which is mainly under the control of aldosterone. Aldosterone binds to and activates mineralocorticoid receptors, which ultimately lead to increased sodium reabsorption in the distal part of the nephron. Impairment of mineralocorticoid signal transduction results in resistanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2000